Mechanical and energetic scaling relationships of running gait through ontogeny in the ostrich (Struthio camelus).
نویسندگان
چکیده
It is unclear whether small animals, with their high stride frequency and crouched posture, or large animals, with more tendinous limbs, are more reliant on storage and return of elastic energy during locomotion. The ostrich has a limb structure that appears to be adapted for high-speed running with long tendons and short muscle fibres. Here we investigate biomechanics of ostrich gait through growth and, with consideration of anatomical data, identify scaling relationships with increasing body size, relating to forces acting on the musculoskeletal structures, effective mechanical advantage (EMA) and mechanical work. Kinematic and kinetic data were collected through growth from running ostriches. Joint moments scaled in a similar way to the pelvic limb segments as a result of consistent posture through growth, such that EMA was independent of body mass. Because no postural change was observed, relative loads applied to musculoskeletal tissues would be predicted to increase during growth, with greater muscle, and hence tendon, load allowing increased potential for elastic energy storage with increasing size. Mass-specific mechanical work per unit distance was independent of body mass, resulting in a small but significant increase in the contribution of elastic energy storage to locomotor economy in larger ostriches.
منابع مشابه
Ontogenetic scaling of locomotor kinetics and kinematics of the ostrich (Struthio camelus).
Kinematic and kinetic parameters of running gait were investigated through growth in the ostrich, from two weeks up to 10 months of age, in order to investigate the effects of increasing body size. Ontogenetic scaling relationships were compared with published scaling relationships found to exist with increasing body size between species to determine whether dynamic similarity is maintained dur...
متن کاملInferring muscle functional roles of the ostrich pelvic limb during walking and running using computer optimization
Owing to their cursorial background, ostriches (Struthio camelus) walk and run with high metabolic economy, can reach very fast running speeds and quickly execute cutting manoeuvres. These capabilities are believed to be a result of their ability to coordinate muscles to take advantage of specialized passive limb structures. This study aimed to infer the functional roles of ostrich pelvic limb ...
متن کاملPhalangeal joints kinematics during ostrich (Struthio camelus) locomotion
The ostrich is a highly cursorial bipedal land animal with a permanently elevated metatarsophalangeal joint supported by only two toes. Although locomotor kinematics in walking and running ostriches have been examined, these studies have been largely limited to above the metatarsophalangeal joint. In this study, kinematic data of all major toe joints were collected from gaits with double suppor...
متن کاملAhistological study of the corneosclera layer (Fibrous tunic) of ostrich (Struthio camelus)
BACKGROUND: The Ostrich is an interesting subject concerninganimal evolution and morphology studies. It has been speculatedthat ostrich eyes would have distinct tissue structures and this hasnot been previously studied in detail. OBJECTIVES: The aim of thepresent study was to investigate the histology of the outer layer ofthe ostrich. METHODS: Ten mature ostriches were chosen from anostrich bre...
متن کاملThe Tarsometatarsus of the Ostrich Struthio camelus: Anatomy, Bone Densities, and Structural Mechanics
BACKGROUND The ostrich Struthio camelus reaches the highest speeds of any extant biped, and has been an extraordinary subject for studies of soft-tissue anatomy and dynamics of locomotion. An elongate tarsometatarsus in adult ostriches contributes to their speed. The internal osteology of the tarsometatarsus, and its mechanical response to forces of running, are potentially revealing about ostr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 216 Pt 5 شماره
صفحات -
تاریخ انتشار 2013